The Kinesin-3, Unc-104 Regulates Dendrite Morphogenesis and Synaptic Development in Drosophila
نویسندگان
چکیده
Kinesin-based transport is important for synaptogenesis, neuroplasticity, and maintaining synaptic function. In an anatomical screen of neurodevelopmental mutants, we identified the exchange of a conserved residue (R561H) in the forkhead-associated domain of the kinesin-3 family member Unc-104/KIF1A as the genetic cause for defects in synaptic terminal- and dendrite morphogenesis. Previous structure-based analysis suggested that the corresponding residue in KIF1A might be involved in stabilizing the activated state of kinesin-3 dimers. Herein we provide the first in vivo evidence for the functional importance of R561. The R561H allele (unc-104(bris)) is not embryonic lethal, which allowed us to investigate consequences of disturbed Unc-104 function on postembryonic synapse development and larval behavior. We demonstrate that Unc-104 regulates the reliable apposition of active zones and postsynaptic densities, possibly by controlling site-specific delivery of its cargo. Next, we identified a role for Unc-104 in restraining neuromuscular junction growth and coordinating dendrite branch morphogenesis, suggesting that Unc-104 is also involved in dendritic transport. Mutations in KIF1A/unc-104 have been associated with hereditary spastic paraplegia and hereditary sensory and autonomic neuropathy type 2. However, we did not observe synapse retraction or dystonic posterior paralysis. Overall, our study demonstrates the specificity of defects caused by selective impairments of distinct molecular motors and highlights the critical importance of Unc-104 for the maturation of neuronal structures during embryonic development, larval synaptic terminal outgrowth, and dendrite morphogenesis.
منابع مشابه
Autoinhibition of a Neuronal Kinesin UNC-104/KIF1A Regulates the Size and Density of Synapses.
Kinesin motor proteins transport intracellular cargoes throughout cells by hydrolyzing ATP and moving along microtubule tracks. Intramolecular autoinhibitory interactions have been shown for several kinesins in vitro; however, the physiological significance of autoinhibition remains poorly understood. Here, we identified four mutations in the stalk region and motor domain of the synaptic vesicl...
متن کاملUNC-16, a JNK-Signaling Scaffold Protein, Regulates Vesicle Transport in C. elegans
Transport of synaptic components is a regulated process. Loss-of-function mutations in the C. elegans unc-16 gene result in the mislocalization of synaptic vesicle and glutamate receptor markers. unc-16 encodes a homolog of mouse JSAP1/JIP3 and Drosophila Sunday Driver. Like JSAP1/JIP3, UNC-16 physically interacts with JNK and JNK kinases. Deletion mutations in Caenorhabditis elegans JNK and JN...
متن کاملRestraint of presynaptic protein levels by Wnd/DLK signaling mediates synaptic defects associated with the kinesin-3 motor Unc-104
The kinesin-3 family member Unc-104/KIF1A is required for axonal transport of many presynaptic components to synapses, and mutation of this gene results in synaptic dysfunction in mice, flies and worms. Our studies at the Drosophila neuromuscular junction indicate that many synaptic defects in unc-104-null mutants are mediated independently of Unc-104's transport function, via the Wallenda (Wnd...
متن کاملThe Drosophila KIF1A Homolog unc-104 Is Important for Site-Specific Synapse Maturation
Mutations in the kinesin-3 family member KIF1A have been associated with hereditary spastic paraplegia (HSP), hereditary and sensory autonomic neuropathy type 2 (HSAN2) and non-syndromic intellectual disability (ID). Both autosomal recessive and autosomal dominant forms of inheritance have been reported. Loss of KIF1A or its homolog unc-104 causes early postnatal or embryonic lethality in mice ...
متن کاملThe KIF1A homolog Unc-104 is important for spontaneous release, postsynaptic density maturation and perisynaptic scaffold organization
The kinesin-3 family member KIF1A has been shown to be important for experience dependent neuroplasticity. In Drosophila, amorphic mutations in the KIF1A homolog unc-104 disrupt the formation of mature boutons. Disease associated KIF1A mutations have been associated with motor and sensory dysfunctions as well as non-syndromic intellectual disability in humans. A hypomorphic mutation in the fork...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 195 شماره
صفحات -
تاریخ انتشار 2013